Neptunes Visual Albedo Variations Over a Solar Cycle A PreVoyager Look at IonInduced Nucleatlon and Cloud Formation in Neptunes Troposphere
نویسندگان
چکیده
High-energy galactic cosmic rays'can penetrate to deep levels within Neptune's atmosphere to form a substantial ionospheric layer in the lower stratosphere and upper troposphere of the planet. Because cosmic-ray modulation in the interplanetary medium creates an inverse relationship between cosmic-ray intensity and solar activity, the ionization rate in the lower atmosphere will vary with the I 1-year solar cycle in such a way that maximum ionization will occur at sunspot minimum and m'mimum ionization at sunspot maximum. This variable ionization may, by the process of ion-induced nucleation, r'egulate the formation and optical properties of an upper tropospheric haze in the atmosphere of Neptune and could thus provide a mechanism for modulating the planet's visual brightness over a solar cycle. We estimate the rates of cosmic-ray ionization at solar maximum and minimum for a range of proposed Neptune dipole magnetic field strengths; discuss the physics of formation of ion clusters and eventual aerosol particles; and, using a simple radiative transfer model, discuss the ways in which this variable aerosol formation can modulate the geometric albedo of Neptune over a solar cycle r If Voyager spacecraft observations reveal that Neptune's dipole magnetic field is about 1 Gauss or less, then our modeling indicates that variations in an aerosol ayer due to differences in cosmic ray ionization may help explain some of the observed brightness variation of Neptune over a solar cycle.
منابع مشابه
COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b
Neptune-sized extrasolar planets that orbit relatively close to their host stars — often called “hot Neptunes” — are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric met...
متن کاملSpectroscopic parameters for 451 stars in the HARPS GTO planet search program Stellar [Fe/H] and the frequency of exo-Neptunes
To understand the formation and evolution of solar-type stars in the solar neighborhood, we need to measure their stellar parameters to high accuracy. We present a catalogue of accurate stellar parameters for 451 stars that represent the HARPS Guaranteed Time Observations (GTO) “high precision” sample. Spectroscopic stellar parameters were measured using high signal-to-noise (S/N) spectra acqui...
متن کاملPhotochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes
Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide range...
متن کاملFormation and Tidal Evolution of Hot Super-earths in Multiple Planetary Systems
Hot super-Earths are exoplanets with masses ≤ 10M⊕ and orbital periods≤ 20 days. Around 8 hot super-Earths have been discovered in the neighborhood of solar system. In this lecture, we review the mechanisms for the formation of hot super-Earths, dynamical effects that play important roles in sculpting the architecture of the multiple planetary systems. Two example systems (HD 40307 and GJ 436) ...
متن کاملAerosol nucleation over oceans and the role of galactic cosmic rays
We investigate formation of sulfate aerosol in the marine troposphere from neutral and charged nucleation of H2SO4 and H2O. A box model of neutral and charged aerosol processes is run on a grid covering the oceans. Input data are taken from a model of galactic cosmic rays in the atmosphere, and from global chemistry and transport models. We find a weak aerosol production over the tropical ocean...
متن کامل